Carbon quantum dots shuttle electrons to the anode of a microbial fuel cell
نویسندگان
چکیده
Electrodes based on graphite, graphene, and carbon nanomaterials have been used in the anode chamber of microbial fuel cells (MFCs). Carbon quantum dots (C-dots) are a class of versatile nanomaterials hitherto not reported in MFCs. C-dots previously synthesized from coconut husk were reported to possess hydroxyl and carboxyl functional groups on their surface. The presence of these functional groups on a carbon matrix conferred on the C-dots the ability to conduct and transfer electrons. Formation of silver nanoparticles from silver nitrate upon addition of C-dots confirmed their reducing ability. DREAM assay using a mixed microbial culture containing C-dots showed a 172% increase in electron transfer activity and thus confirmed the involvement of C-dots in supplementing redox activity of a microbial culture. Addition of C-dots as a suspension in the anode chamber of an MFC resulted in a 22.5% enhancement in maximum power density. C-dots showed better performance as electron shuttles than methylene blue, a conventional electron shuttle used in MFCs.
منابع مشابه
Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μL) microbial fuel cell.
Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nick...
متن کاملRemoval of High Concentrations of Phenol in Dual Chamber Microbial Fuel Cell
Background and purpose: Microbial fuel cell is one of the sustainable development technologies that can be used simultaneously for removal of many pollutants and generate electricity. The aim of this study was to determine the removal rate of high concentrations of phenol in a microbial fuel cell. Materials and methods: A dual chamber microbial fuel cell having Nafion proton exchange membrane ...
متن کاملSulfurous Analysis of Bioelectricity Generation from Sulfate-reducing Bacteria (SRB) in a Microbial Fuel Cell
The current importance of energy emphasizes the use of renewable resources (such as wastewater) for electricity generation by microbial fuel cell (MFC). In the present study, the native sulfate-reducing bacterial strain (R.gh 3) was employed simultaneously for sulfurous component removal and bioelectricity generation. In order to enhance the electrical conductivity and provision of a compatible...
متن کاملCharacterization of the Electric Current Generation Potential of the Pseudomonas aeruginosa Using Glucose, Fructose, and Sucrose in Double Chamber Microbial Fuel Cell
Background: Different concentrations of the simple carbon substrates i.e. glucose, fructose, and sucrose were tested to enhance the performance of the mediator-less double chamber microbial fuel cell (MFC). Objectives: The power generation potential of the different electron donors was studied using a mesophilic Fe (III) reducer and non-fermentative bacteria Pseudomonas aeruginosa</em...
متن کاملAnode materials for sediment microbial fuel cells.
INTRODUCTION Plant microbial fuel cells (P-MFCs), and more general sediment microbial fuel cells, make use of electricigenic metabolism of microorganisms in anoxic soils and sediments. Electricigenic microorganisms are able to respire organic carbon from the soil or sediment with an electrode as final electron acceptor [1]. In this work, the focus is on the anode buried in the sediment, the ele...
متن کامل